CONTINUOUS INSULATION PRIMER

PART 1 – Continuous Insulation

• Definition (<u>ASHRAE 90.1</u>)

continuous insulation (c.i.): insulation that is continuous across all structural members without thermal bridges other than fasteners and service openings. It is installed on the interior or exterior or is integral to any opaque surface of the building envelope.

• Applications: Roof, Wall, and Foundations

Kinds of Continuous Insulation

- Foam Plastic Insulating Sheathing
 - <u>EPS, XPS</u>, <u>Polyiso</u>
- Spray Polyurethane Foam
 - <u>SPF</u> (closed cell polyurethane)
- Others
 - Rock wool
 - Fiberglass boards
 - Fiberboard

Cl History & Experience

- In early 1900's, solid wood board sheathing was considered as a form of continuous wall insulation (HEW, 1931) (~1.2 R/in)
- Cellulosic Fiber Insulating Board ('Fiberboard') is a form of continuous insulation in use since the early 1900's (~2.5 R/in)

Cl History & Experience

- Continuous insulation is not a new concept.
 Foam plastic insulating sheathing has been successfully used in this application for more than 50 years.
 - Foam sheathing has been used as continuous insulation for low-slope roofs since the 1940's (~4-6 R/in)
 - Wall applications of continuous insulation saw increased interest after the 1970's oil crisis

Role of CI and Various Requirements for Appropriate Use

Foam Plastic Insulating Sheathing (FPIS)

- Expanded Polystyrene (EPS), <u>ASTM C578</u>
- Extruded Polystyrene (XPS), ASTM C578
- Polyisocyanurate (Polyiso), ASTM C1289

R-value per Inch

TABLE 1. Examples of Minimum R-Value Per Inch for Common Typesof Continuous Insulation (Foam Sheathing)

Continuous Insulation Material Type	R-value per Inch of Thickness
EPS (ASTM C578, Type II)	4.0
XPS (ASTM C578, Type X)	5.0
Polyiso (ASTM C1289, Type I)	6.0

- Consult with FPIS manufacturer for specific values.
- Values shown are representative minimum values.

Water Resistance

Table 1 – Standard Test Methods and Criteria for Moisture AbsorptionResistance Characterization of Various Insulation Board Materials

Insulation Material Type	Maximum Moisture Content (% volume	
	(24 br water	ASTIVIC 205
	(24 III water	(2 III Water
	Immersion test)	Immersion test)
XPS (ASTM C578)	0.3%	n/a
EPS (ASTM C578)	2 to 4%	n/a
Polyiso (ASTM C1289)	n/a	1-2%
Fiberboard (ASTM C208)	n/a	7-10%

Moisture Sorption Comparison

Durability

- Foam Plastic Insulating Sheathing (FPIS)
 - Does not rot, decay or corrode
 - Not food for termites
 - Can be used to protect moisture sensitive sheathing and framing materials
- Other wall sheathing
 - May be prone to moisture damage without adequate protection

Wall Applications

 Adaptable to a variety of exterior wall construction types, cladding types, and building types

Wall Functions of CI

- Continuous Thermal Insulation (CI)
- Water Resistive Barrier (WRB)
- Air Barrier (AB)
- Water Vapor Control (WVC)

- The code compliant application of the above functions will be covered later in this presentation

Going beyond minimum code with CI

Building Science Corporation NIST Net Zero Energy Research Home

Topical Resources for Parts 2 & 3

Торіс	Resource (link)
U-factor	http://appliedbuildingtech.com/calculator.html
Fire	<u>TER No. 1202-01, TER No. 1202-03, TER No. 1202-04</u>
Bracing	TER No. 1410-07 (not online yet)
Air Barrier	<u>TER No. 1410-06</u>
WRB	<u>TER No. 1410-05</u>
Vapor Control	TER No. 1309-02 (not online yet)
Wind Pressure	ANSI/SBCA FS100-12
Detailing	<u>TER No. 1205-05</u>
Air-space R- value	Tech Matters - Energy Code Compliance: Thermal Resistance of Air Spaces Behind Exterior Wall Coverings
Termites	<u>Tech Matters – Analysis of and Recommended Actions for Termite Related</u> <u>Code Change Proposals for the 2012 IBC & IRC</u>
Vinyl Siding Over Foam	TER No. 1006-01 (pending updates)